Robust pump with long service life
Very high total efficiency
High power density
Large variety of available nominal sizes allows exact adjustment to the application
Optional with long-life bearings for the nominal sizes 250 to 1000
Bent-axis design
Availability: | |
---|---|
Quantity: | |
Robust pump with long service life
Very high total efficiency
High power density
Large variety of available nominal sizes allows exact adjustment to the application
Optional with long-life bearings for the nominal sizes 250 to 1000
Bent-axis design
Robust pump with long service life
Very high total efficiency
High power density
Large variety of available nominal sizes allows exact adjustment to the application
Optional with long-life bearings for the nominal sizes 250 to 1000
Bent-axis design
Size | 5 | 10 | 12 | 16 | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |||
Displacement | Vg | cm³ | 4.93 | 10.3 | 12 | 16 | 22.9 | 28.1 | 32 | 45.6 | 56.1 | 63 | 80.4 | 90 | 106.7 | 125 | 160.4 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |
Nominal pressure | pnom | bar | 315 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 350 | 350 | 350 | 350 | 350 | |
Maximum pressure | pmax | bar | 350 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 400 | 400 | 400 | 400 | 400 | |
Maximum speed | nnom 1) | rpm | 5600 | 3150 | 3150 | 3150 | 2500 | 2500 | 2500 | 2240 | 2000 | 2000 | 1800 | 1800 | 1600 | 1600 | 1450 | 1450 | 1550 | 1500 | 1320 | 1200 | 1200 | 950 | |
nmax 2) | rpm | 8000 | 6000 | 6000 | 6000 | 4750 | 4750 | 4750 | 4250 | 3750 | 3750 | 3350 | 3350 | 3000 | 3000 | 2650 | 2650 | 2750 | 1800 | 1600 | 1500 | 1500 | 1200 | ||
Flow | at nnom | qV | l/min | 27.6 | 32 | 38 | 50 | 57 | 70 | 80 | 102 | 112 | 126 | 145 | 162 | 171 | 200 | 233 | 261 | 310 | 375 | 469 | 600 | 852 | 950 |
Power | at nnom and pnom | P | kW | 14.5 | 22 | 25 | 34 | 38 | 47 | 53 | 68 | 75 | 84 | 96 | 108 | 114 | 133 | 155 | 174 | 207 | 219 | 273 | 350 | 497 | 554 |
Torque 3) | at pnom | M | Nm | 24.7 | 66 | 76 | 102 | 146 | 179 | 204 | 290 | 357 | 401 | 512 | 573 | 679 | 796 | 1021 | 1146 | 1273 | 1393 | 1978 | 2785 | 3955 | 5570 |
Rotary stiffness | c | kNm/rad | 0.63 | 0.92 | 1.25 | 1.59 | 2.56 | 2.93 | 3.12 | 4.18 | 5.94 | 6.25 | 8.73 | 9.14 | 11.2 | 11.9 | 17.4 | 18.2 | 57.3 | 73.1 | 96.1 | 144 | 270 | 324 | |
Moment of inertia for rotary group | JTW | kg·m² | 0.00006 | 0.0004 | 0.0004 | 0.0004 | 0.0012 | 0.0012 | 0.0012 | 0.0024 | 0.0042 | 0.0042 | 0.0072 | 0.0072 | 0.0116 | 0.0116 | 0.022 | 0.022 | 0.0353 | 0.061 | 0.102 | 0.178 | 0.55 | 0.55 | |
Maximum angular acceleration | ɑ | rad/s² | 5000 | 5000 | 5000 | 5000 | 6500 | 6500 | 6500 | 14600 | 7500 | 7500 | 6000 | 6000 | 4500 | 4500 | 3500 | 3500 | 11000 | 10000 | 8300 | 5500 | 4300 | 4500 | |
Case volume | V | l | 0.17 | 0.17 | 0.17 | 0.2 | 0.2 | 0.2 | 0.33 | 0.45 | 0.45 | 0.55 | 0.55 | 0.8 | 0.8 | 1.1 | 1.1 | 2.7 | 2.5 | 3.5 | 4.2 | 8 | 8 | ||
Weight (approx.) | m | kg | 2.5 | 6 | 6 | 6 | 9.5 | 9.5 | 9.5 | 13.5 | 18 | 18 | 23 | 23 | 32 | 32 | 45 | 45 | 66 | 73 | 110 | 155 | 325 | 336 |
1) | These values are valid at: - an absolute pressure of pabs = 1 bar at suction port S - for the optimum viscosity range from vopt = 36 to 16 mm2/s - with hydraulic fluid based on mineral oils |
2) | Maximum speed (limiting speed) with increased inlet pressure pabs at suction port S, see the following diagram. |
3) | Torque without radial force, with radial force see table "Permissible radial and axial forces of the drive shafts" |
The values in the table are theoretical values, without consideration of efficiencies and tolerances. The values are rounded.
Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.
Determining the operating characteristics | ||
Flow | | [l/min] |
Torque | | [Nm] |
Power | | [kW] |
Key | |
Vg | Displacement per revolution [cm3] |
Δp | Differential pressure [bar] |
n | Rotational speed [rpm] |
ηv | Volumetric efficiency |
ηhm | Hydraulic-mechanical efficiency |
ηt | Total efficiency (ηt = ηv \u2022 ηhm) |
The axial piston unit is designed for operation with mineral oil HLP according to DIN 51524.
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:
| Viscosity | Shaft | Temperature1) | Comment |
Cold start | νmax ≤ 1600 mm²/s | NBR2) | ϑSt ≥ -40 °C | t ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm, |
FKM | ϑSt ≥ -25 °C | |||
Warm-up phase | ν = 400 \u2026 1600 mm²/s |
| t ≤ 15 min, p ≤ 0.7 \u2022 pnom and n ≤ 0.5 \u2022 nnom | |
Continuous operation | ν = 10 \u2026 400 mm²/s3) | NBR2) | ϑ ≤ +78 °C | measured at port T |
FKM | ϑ ≤ +103 °C | |||
νopt = 16 \u2026 36 mm²/s | range of optimum operating viscosity and efficiency | |||
Short-term operation | νmin = 7 \u2026 10 mm²/s | NBR2) | ϑ ≤ +78 °C | t ≤ 3 min, p ≤ 0.3 \u2022 pnom measured at port T |
FKM | ϑ ≤ +103 °C |
1) | If the specified temperatures cannot be maintained due to extreme operating parameters, please contact us. |
2) | Special version, please contact us. |
3) | Equates e.g. with the VG 46 a temperature range of +5 °C to +85 °C (see selection diagram) |
Bosch Rexroth evaluates hydraulic fluids on the basis of the Fluid Rating according to the technical data sheet 90235.
Hydraulic fluids with positive evaluation in the Fluid Rating are provided in the following technical data sheet:
The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (νopt; see selection diagram).
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.
A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.
At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures in short-term operation) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required.
For example, the viscosity is 10 mm²/s at:
HLP 32 a temperature of 73°C
HLP 46 a temperature of 85°C
Pressure at working port A or B (high-pressure side) | Definition | ||
Nominal pressure | pnom | see table of values | The nominal pressure corresponds to the maximum design pressure. |
Maximum pressure | pmax | see table of values | The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period. |
Single operating period | 10 s | ||
Total operating period | 300 h | ||
Minimum pressure | pHP min | 25 bar | Minimum pressure on high-pressure side (port A or B) required to prevent damage to the axial piston unit. |
Rate of pressure change | RA max | 16000 bar/s | Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range. |
Pressure at suction port S (inlet) | Definition | ||
Minimum pressure | ps min | 0.8 bar absolute | Minimum pressure at inlet (suction port S) that is required to avoid damage to the axial piston unit. The minimum required pressure is dependent on the speed of the axial piston unit. |
Maximum pressure | ps max | 30 bar absolute | |
Case pressure at port T | Definition | ||
Continuous differential pressure | ΔpT cont | 2 bar | Maximum averaged differential pressure at the shaft seal (case to ambient) |
Maximum differential pressure | ΔpT max | see diagram "Maximum differential pressure at the shaft seal" | Intermittent differential pressure at the shaft seal (permitted at reduced speed) |
Pressure peaks | pT peak | 10 bar | t < 0.1 s |
Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.
1) | Total operating period = t1 + t2 + ... + tn |
The service life of the shaft seal is influenced by the speed of the axial piston unit and the case pressure.
The service life decreases with an increase of the mean differential pressure between the case and the ambient pressure and with a higher frequency of pressure spikes.
The case pressure must be equal to or higher than the ambient pressure.
Direction of rotation, viewed on drive shaft | clockwise | counter-clockwise |
Direction of flow | S to B | S to A |
Size | 5 | 10 | 12 | 16 | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |||||||||||||
Drive shaft | Code | B, C | Z, P | A, B | Z, P | A, B | A, B | Z, P | A, B | Z, P | A, B | A, B | Z, P | Z | P | A, B | A, B | Z | P | A, B | A, B | Z, P | A, B | A, B | Z, P | A, B | A, B | A, B | Z, P | Z, P | Z, P | Z, P | Z, P | ||
⌀ | mm | 12 | 20 | 25 | 20 | 25 | 25 | 25 | 30 | 25 | 30 | 30 | 30 | 30 | 30 | 35 | 35 | 35 | 35 | 40 | 40 | 40 | 45 | 45 | 45 | 45 | 50 | 50 | 50 | 60 | 70 | 90 | 90 | ||
Maximum radial force | | Fq max | kN | 1.6 | 3 | 3.2 | 3 | 3.2 | 3.2 | 5.7 | 5.4 | 5.7 | 5.4 | 5.4 | 7.6 | 7.8 | 9.5 | 9.1 | 9.1 | 11.1 | 11.6 | 11.4 | 11.4 | 13.6 | 14.1 | 14.1 | 18.1 | 18.3 | 18.3 | 20.3 | 1.2 1) | 1.5 1) | 1.9 1) | 3 1) | 2.6 1) |
a | mm | 12 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 25 | 41 | 52.5 | 52.5 | 67.5 | 67.5 | ||
Permitted torque at Fq max | Tq max | Nm | 24.7 | 66 | 66 | 76 | 76 | 102 | 146 | 146 | 179 | 179 | 204 | 290 | 294 | 357 | 357 | 401 | 488 | 512 | 512 | 573 | 679 | 679 | 796 | 1021 | 1021 | 1146 | 1273 | ||||||
Permitted differential pressure at Fq max | Δpq max | bar | 315 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 330 | 400 | 400 | 400 | 380 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | ||||||
Maximum axial force, when standstill or in non-pressurized conditions | | + Fax max | N | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- Fax max | N | 180 | 320 | 320 | 320 | 320 | 320 | 500 | 500 | 500 | 500 | 500 | 630 | 800 | 800 | 800 | 800 | 1000 | 1000 | 1000 | 1000 | 1250 | 1250 | 1250 | 1600 | 1600 | 1600 | 1600 | 2000 | 2500 | 3000 | 4400 | 4400 | ||
Maximum axial force, per bar operating pressure | + Fax max | N/bar | 1.5 | 3 | 3 | 3 | 3 | 3 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 7 | 8.7 | 8.7 | 8.7 | 9.7 | 10.6 | 10.6 | 10.6 | 10.6 | 12.9 | 12.9 | 12.9 | 16.7 | 16.7 | 16.7 | 5.2 |
1) | When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us. |
The specified values are maximum data and not approved for continuous operation.
The axial force in the direction of action -Fax is to be avoided as this reduces the bearing life cycle.
The output by means of belts requires special conditions. Please consult us.
Notes for sizes 250 ... 1000:
In case of radial forces limited performance data is valid. Please contact us.
In case of axial forces during operation of the unit please contact us.
By selecting a suitable direction of radial force Fq the load on the bearings caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:
1 | Direction of rotation "clockwise", pressure at port B |
2 | Direction of rotation "counter-clockwise", pressure at port A |
For long life cycle and use with HF hydraulic fluids. Identical external dimensions as design with standard bearing. Subsequent modification to long-life bearing is possible. Bearing and housing flushing via connection U is recommended.
Size | 250 | 355 | 500 | 710 | 1000 | |
Flushing flow qv | l/min | 10 | 16 | 16 | 16 | 16 |
Size | 5 | 10 | 12 | 16 | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |||
Displacement | Vg | cm³ | 4.93 | 10.3 | 12 | 16 | 22.9 | 28.1 | 32 | 45.6 | 56.1 | 63 | 80.4 | 90 | 106.7 | 125 | 160.4 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |
Nominal pressure | pnom | bar | 315 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 350 | 350 | 350 | 350 | 350 | |
Maximum pressure | pmax | bar | 350 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 450 | 400 | 400 | 400 | 400 | 400 | |
Maximum speed | nnom 1) | rpm | 5600 | 3150 | 3150 | 3150 | 2500 | 2500 | 2500 | 2240 | 2000 | 2000 | 1800 | 1800 | 1600 | 1600 | 1450 | 1450 | 1550 | 1500 | 1320 | 1200 | 1200 | 950 | |
nmax 2) | rpm | 8000 | 6000 | 6000 | 6000 | 4750 | 4750 | 4750 | 4250 | 3750 | 3750 | 3350 | 3350 | 3000 | 3000 | 2650 | 2650 | 2750 | 1800 | 1600 | 1500 | 1500 | 1200 | ||
Flow | at nnom | qV | l/min | 27.6 | 32 | 38 | 50 | 57 | 70 | 80 | 102 | 112 | 126 | 145 | 162 | 171 | 200 | 233 | 261 | 310 | 375 | 469 | 600 | 852 | 950 |
Power | at nnom and pnom | P | kW | 14.5 | 22 | 25 | 34 | 38 | 47 | 53 | 68 | 75 | 84 | 96 | 108 | 114 | 133 | 155 | 174 | 207 | 219 | 273 | 350 | 497 | 554 |
Torque 3) | at pnom | M | Nm | 24.7 | 66 | 76 | 102 | 146 | 179 | 204 | 290 | 357 | 401 | 512 | 573 | 679 | 796 | 1021 | 1146 | 1273 | 1393 | 1978 | 2785 | 3955 | 5570 |
Rotary stiffness | c | kNm/rad | 0.63 | 0.92 | 1.25 | 1.59 | 2.56 | 2.93 | 3.12 | 4.18 | 5.94 | 6.25 | 8.73 | 9.14 | 11.2 | 11.9 | 17.4 | 18.2 | 57.3 | 73.1 | 96.1 | 144 | 270 | 324 | |
Moment of inertia for rotary group | JTW | kg·m² | 0.00006 | 0.0004 | 0.0004 | 0.0004 | 0.0012 | 0.0012 | 0.0012 | 0.0024 | 0.0042 | 0.0042 | 0.0072 | 0.0072 | 0.0116 | 0.0116 | 0.022 | 0.022 | 0.0353 | 0.061 | 0.102 | 0.178 | 0.55 | 0.55 | |
Maximum angular acceleration | ɑ | rad/s² | 5000 | 5000 | 5000 | 5000 | 6500 | 6500 | 6500 | 14600 | 7500 | 7500 | 6000 | 6000 | 4500 | 4500 | 3500 | 3500 | 11000 | 10000 | 8300 | 5500 | 4300 | 4500 | |
Case volume | V | l | 0.17 | 0.17 | 0.17 | 0.2 | 0.2 | 0.2 | 0.33 | 0.45 | 0.45 | 0.55 | 0.55 | 0.8 | 0.8 | 1.1 | 1.1 | 2.7 | 2.5 | 3.5 | 4.2 | 8 | 8 | ||
Weight (approx.) | m | kg | 2.5 | 6 | 6 | 6 | 9.5 | 9.5 | 9.5 | 13.5 | 18 | 18 | 23 | 23 | 32 | 32 | 45 | 45 | 66 | 73 | 110 | 155 | 325 | 336 |
1) | These values are valid at: - an absolute pressure of pabs = 1 bar at suction port S - for the optimum viscosity range from vopt = 36 to 16 mm2/s - with hydraulic fluid based on mineral oils |
2) | Maximum speed (limiting speed) with increased inlet pressure pabs at suction port S, see the following diagram. |
3) | Torque without radial force, with radial force see table "Permissible radial and axial forces of the drive shafts" |
The values in the table are theoretical values, without consideration of efficiencies and tolerances. The values are rounded.
Exceeding the maximum or falling below the minimum permissible values can lead to a loss of function, a reduction in operational service life or total destruction of the axial piston unit. Other permissible limit values, such as speed variation, reduced angular acceleration as a function of the frequency and the permissible angular acceleration at start (lower than the maximum angular acceleration) can be found in data sheet 90261.
Determining the operating characteristics | ||
Flow | | [l/min] |
Torque | | [Nm] |
Power | | [kW] |
Key | |
Vg | Displacement per revolution [cm3] |
Δp | Differential pressure [bar] |
n | Rotational speed [rpm] |
ηv | Volumetric efficiency |
ηhm | Hydraulic-mechanical efficiency |
ηt | Total efficiency (ηt = ηv \u2022 ηhm) |
The axial piston unit is designed for operation with mineral oil HLP according to DIN 51524.
Application instructions and requirements for hydraulic fluids should be taken from the following data sheets before the start of project planning:
| Viscosity | Shaft | Temperature1) | Comment |
Cold start | νmax ≤ 1600 mm²/s | NBR2) | ϑSt ≥ -40 °C | t ≤ 3 min, without load (p ≤ 50 bar), n ≤ 1000 rpm, |
FKM | ϑSt ≥ -25 °C | |||
Warm-up phase | ν = 400 \u2026 1600 mm²/s |
| t ≤ 15 min, p ≤ 0.7 \u2022 pnom and n ≤ 0.5 \u2022 nnom | |
Continuous operation | ν = 10 \u2026 400 mm²/s3) | NBR2) | ϑ ≤ +78 °C | measured at port T |
FKM | ϑ ≤ +103 °C | |||
νopt = 16 \u2026 36 mm²/s | range of optimum operating viscosity and efficiency | |||
Short-term operation | νmin = 7 \u2026 10 mm²/s | NBR2) | ϑ ≤ +78 °C | t ≤ 3 min, p ≤ 0.3 \u2022 pnom measured at port T |
FKM | ϑ ≤ +103 °C |
1) | If the specified temperatures cannot be maintained due to extreme operating parameters, please contact us. |
2) | Special version, please contact us. |
3) | Equates e.g. with the VG 46 a temperature range of +5 °C to +85 °C (see selection diagram) |
Bosch Rexroth evaluates hydraulic fluids on the basis of the Fluid Rating according to the technical data sheet 90235.
Hydraulic fluids with positive evaluation in the Fluid Rating are provided in the following technical data sheet:
The hydraulic fluid should be selected so that the operating viscosity in the operating temperature range is within the optimum range (νopt; see selection diagram).
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.
A cleanliness level of at least 20/18/15 is to be maintained according to ISO 4406.
At a hydraulic fluid viscosity of less than 10 mm²/s (e.g. due to high temperatures in short-term operation) at the drain port, a cleanliness level of at least 19/17/14 according to ISO 4406 is required.
For example, the viscosity is 10 mm²/s at:
HLP 32 a temperature of 73°C
HLP 46 a temperature of 85°C
Pressure at working port A or B (high-pressure side) | Definition | ||
Nominal pressure | pnom | see table of values | The nominal pressure corresponds to the maximum design pressure. |
Maximum pressure | pmax | see table of values | The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period. |
Single operating period | 10 s | ||
Total operating period | 300 h | ||
Minimum pressure | pHP min | 25 bar | Minimum pressure on high-pressure side (port A or B) required to prevent damage to the axial piston unit. |
Rate of pressure change | RA max | 16000 bar/s | Maximum permissible rate of pressure build-up and reduction during a pressure change over the entire pressure range. |
Pressure at suction port S (inlet) | Definition | ||
Minimum pressure | ps min | 0.8 bar absolute | Minimum pressure at inlet (suction port S) that is required to avoid damage to the axial piston unit. The minimum required pressure is dependent on the speed of the axial piston unit. |
Maximum pressure | ps max | 30 bar absolute | |
Case pressure at port T | Definition | ||
Continuous differential pressure | ΔpT cont | 2 bar | Maximum averaged differential pressure at the shaft seal (case to ambient) |
Maximum differential pressure | ΔpT max | see diagram "Maximum differential pressure at the shaft seal" | Intermittent differential pressure at the shaft seal (permitted at reduced speed) |
Pressure peaks | pT peak | 10 bar | t < 0.1 s |
Working pressure range valid when using hydraulic fluids based on mineral oils. Values for other hydraulic fluids, please contact us.
1) | Total operating period = t1 + t2 + ... + tn |
The service life of the shaft seal is influenced by the speed of the axial piston unit and the case pressure.
The service life decreases with an increase of the mean differential pressure between the case and the ambient pressure and with a higher frequency of pressure spikes.
The case pressure must be equal to or higher than the ambient pressure.
Direction of rotation, viewed on drive shaft | clockwise | counter-clockwise |
Direction of flow | S to B | S to A |
Size | 5 | 10 | 12 | 16 | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | 200 | 250 | 355 | 500 | 710 | 1000 | |||||||||||||
Drive shaft | Code | B, C | Z, P | A, B | Z, P | A, B | A, B | Z, P | A, B | Z, P | A, B | A, B | Z, P | Z | P | A, B | A, B | Z | P | A, B | A, B | Z, P | A, B | A, B | Z, P | A, B | A, B | A, B | Z, P | Z, P | Z, P | Z, P | Z, P | ||
⌀ | mm | 12 | 20 | 25 | 20 | 25 | 25 | 25 | 30 | 25 | 30 | 30 | 30 | 30 | 30 | 35 | 35 | 35 | 35 | 40 | 40 | 40 | 45 | 45 | 45 | 45 | 50 | 50 | 50 | 60 | 70 | 90 | 90 | ||
Maximum radial force | | Fq max | kN | 1.6 | 3 | 3.2 | 3 | 3.2 | 3.2 | 5.7 | 5.4 | 5.7 | 5.4 | 5.4 | 7.6 | 7.8 | 9.5 | 9.1 | 9.1 | 11.1 | 11.6 | 11.4 | 11.4 | 13.6 | 14.1 | 14.1 | 18.1 | 18.3 | 18.3 | 20.3 | 1.2 1) | 1.5 1) | 1.9 1) | 3 1) | 2.6 1) |
a | mm | 12 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 18 | 18 | 18 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 25 | 41 | 52.5 | 52.5 | 67.5 | 67.5 | ||
Permitted torque at Fq max | Tq max | Nm | 24.7 | 66 | 66 | 76 | 76 | 102 | 146 | 146 | 179 | 179 | 204 | 290 | 294 | 357 | 357 | 401 | 488 | 512 | 512 | 573 | 679 | 679 | 796 | 1021 | 1021 | 1146 | 1273 | ||||||
Permitted differential pressure at Fq max | Δpq max | bar | 315 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 330 | 400 | 400 | 400 | 380 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | ||||||
Maximum axial force, when standstill or in non-pressurized conditions | | + Fax max | N | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
- Fax max | N | 180 | 320 | 320 | 320 | 320 | 320 | 500 | 500 | 500 | 500 | 500 | 630 | 800 | 800 | 800 | 800 | 1000 | 1000 | 1000 | 1000 | 1250 | 1250 | 1250 | 1600 | 1600 | 1600 | 1600 | 2000 | 2500 | 3000 | 4400 | 4400 | ||
Maximum axial force, per bar operating pressure | + Fax max | N/bar | 1.5 | 3 | 3 | 3 | 3 | 3 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 7 | 8.7 | 8.7 | 8.7 | 9.7 | 10.6 | 10.6 | 10.6 | 10.6 | 12.9 | 12.9 | 12.9 | 16.7 | 16.7 | 16.7 | 5.2 |
1) | When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us. |
The specified values are maximum data and not approved for continuous operation.
The axial force in the direction of action -Fax is to be avoided as this reduces the bearing life cycle.
The output by means of belts requires special conditions. Please consult us.
Notes for sizes 250 ... 1000:
In case of radial forces limited performance data is valid. Please contact us.
In case of axial forces during operation of the unit please contact us.
By selecting a suitable direction of radial force Fq the load on the bearings caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:
1 | Direction of rotation "clockwise", pressure at port B |
2 | Direction of rotation "counter-clockwise", pressure at port A |
For long life cycle and use with HF hydraulic fluids. Identical external dimensions as design with standard bearing. Subsequent modification to long-life bearing is possible. Bearing and housing flushing via connection U is recommended.
Size | 250 | 355 | 500 | 710 | 1000 | |
Flushing flow qv | l/min | 10 | 16 | 16 | 16 | 16 |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
2) | Thread according to DIN 3852, maximum tightening torque: 30 Nm |
Size | 5 | ||
B (A) | Working port | Size | M18 × 1.5; 12 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | M22 × 1.5; 14 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M10 × 1; 8 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery 2) | Plugged (observe installation instructions) | ||
T2 | Drain port | Size | M10 × 1; 8 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery 2) | With protective cover (observe installation instructions) |
1) | The spot face can be deeper than specified in the appropriate standard. |
2) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 10 | 12 | 16 | ||
B (A) | Working port | Size | M22 × 1.5; 14 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | With protective cover (must be connected) | ||||
S | Suction port | Size | M33 × 2; 18 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | With protective cover (must be connected) | ||||
T1 | Drain port | Size | M12 × 1.5; 12 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery 2) | Plugged (observe installation instructions) | ||||
T2 | Drain port | Size | M12 × 1.5; 12 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery 2) | With protective cover (observe installation instructions) | ||||
R | Air bleed port | Size | M8 × 1; 8 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | Plugged |
1) | The spot face can be deeper than specified in the appropriate standard. |
2) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
Size | D1 | D3 | D4 | D6 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 | D18 | D19 | D20 | D21 | D22 | D25 | D28 | D29 | D32 | D40 | D41 | D42 | D43 | D44 | |
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | |
23 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
28 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
32 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
45 | 125 | 0 - 0.025 | 207 | 133 | 64 | 20 | 12 | 32 | 30 | 80 | 155 | 100 | 179 | 20 | 28 | 108 | 63 | 42 | 78 | 11 | 150 | 160 | 13.5 | 118 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
56 | 125 | 0 - 0.025 | 225 | 142 | 68 | 20 | 10 | 32 | 30 | 87 | 171 | 107 | 195 | 23 | 31 | 117 | 70 | 50 | 78 | 11 | 150 | 160 | 13.5 | 128 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
63 | 125 | 0 - 0.025 | 225 | 142 | 68 | 20 | 10 | 32 | 30 | 87 | 171 | 107 | 195 | 23 | 31 | 117 | 70 | 50 | 78 | 11 | 150 | 160 | 13.5 | 128 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
80 | 140 | 0 - 0.025 | 257 | 162 | 73 | 20 | 10 | 32 | 29 | 99 | 196 | 122 | 224 | 25 | 41 | 132 | 83 | 63 | 86 | 11 | 165 | 180 | 13.5 | 138 | 27.8 | 57.2 | 25 | 30.2 | 58.7 |
90 | 140 | 0 - 0.025 | 257 | 162 | 73 | 20 | 10 | 32 | 29 | 99 | 196 | 136 | 224 | 25 | 41 | 132 | 83 | 63 | 86 | 11 | 165 | 180 | 13.5 | 138 | 27.8 | 57.2 | 25 | 30.2 | 58.7 |
107 | 160 | 0 - 0.025 | 275 | 174 | 89 | 23 | 10 | 40 | 85 | 110 | 213 | 136 | 245 | 20 | 40 | 140 | 85 | 65 | 98 | 12 | 190 | 200 | 17.5 | 150 | 27.8 | 57.2 | 25 | 35.7 | 69.9 |
125 | 160 | 0 - 0.025 | 275 | 174 | 89 | 23 | 10 | 40 | 36.5 | 110 | 213 | 136 | 245 | 20 | 40 | 140 | 85 | 65 | 98 | 12 | 190 | 200 | 17.5 | 150 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
160 | 180 | 0 - 0.025 | 294 | 188 | 101 | 25 | 10 | 40 | 37.2 | 121 | 237 | 149 | 271 | 15 | 47 | 158 | 96 | 72 | 108 | 13 | 210 | 224 | 17.5 | 180 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
180 | 180 | 0 - 0.025 | 294 | 188 | 101 | 25 | 10 | 40 | 37.2 | 121 | 237 | 149 | 271 | 15 | 47 | 158 | 96 | 72 | 108 | 13 | 210 | 224 | 17.5 | 180 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | N2 | N3 | N4 | N5 | ØN6 |
mm | mm | mm | mm | mm | ||||
23 | Z | W25×1.25×18×9g | M8 × 1.25 | 6 | 19 | 28 | 43 | 35 |
A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 | |
28 | Z | W25×1.25×18×9g | M8 × 1.25 | 6 | 19 | 28 | 43 | 35 |
A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 | |
32 | A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 |
45 | Z | W30×2×14×9g | M12 × 1.75 | 9.5 | 28 | 27 | 35 | 35 |
56 | Z | W30×2×14×9g | M12 × 1.75 | 9.5 | 28 | 27 | 35 | 40 |
A | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 40 | |
63 | A | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 40 |
80 | Z | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 45 |
A | W40×2×18×9g | M16 × 2 | 12 | 36 | 37 | 45 | 45 | |
90 | A | W40×2×18×9g | M16 × 2 | 12 | 36 | 37 | 45 | 45 |
107 | Z | W40×2×18×9g | M12 × 1.75 | 9.5 | 28 | 37 | 45 | 50 |
A | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 50 | |
125 | A | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 50 |
160 | Z | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 60 |
A | W50×2×24×9g | M16 × 2 | 12 | 36 | 44 | 55 | 60 | |
180 | A | W50×2×24×9g | M16 × 2 | 12 | 36 | 44 | 55 | 60 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | ⌀N1 | N2 | N3 | N5 | ⌀N6 | N7 | N8 | |
mm | mm | mm | mm | mm | mm | mm | mm | ||||
23 | P | ⌀25, AS8×7×40 | M8 × 1.25 | 25 | + 0.015 + 0.002 | 6 | 19 | 50 | 35 | 28 | 8 |
B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 | |
28 | P | ⌀25, AS8×7×40 | M8 × 1.25 | 25 | + 0.015 + 0.002 | 6 | 19 | 50 | 35 | 28 | 8 |
B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 | |
32 | B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 |
45 | P | ⌀30, AS8×7×50 | M12 × 1.75 | 30 | + 0.015 + 0.002 | 9.5 | 28 | 60 | 35 | 33 | 8 |
56 | P | ⌀30, AS8×7×50 | M12 × 1.75 | 30 | + 0.015 + 0.002 | 9.5 | 28 | 60 | 40 | 33 | 8 |
B | ⌀35, AS10×8×50 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 60 | 40 | 38 | 10 | |
63 | B | ⌀35, AS10×8×50 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 60 | 40 | 38 | 10 |
80 | P | ⌀35, AS10×8×56 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 70 | 45 | 38 | 10 |
B | ⌀40, AS12×8×56 | M16 × 2 | 40 | + 0.018 + 0.002 | 12 | 36 | 70 | 45 | 43 | 12 | |
90 | B | ⌀40, AS12×8×56 | M16 × 2 | 40 | + 0.018 + 0.002 | 12 | 36 | 70 | 45 | 43 | 12 |
107 | P | ⌀40, AS12×8×63 | M12 × 1.75 | 40 | + 0.018 + 0.002 | 9.5 | 28 | 80 | 50 | 43 | 12 |
B | ⌀45, AS14×9×63 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 80 | 50 | 48.5 | 14 | |
125 | B | ⌀45, AS14×9×63 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 80 | 50 | 48.5 | 14 |
160 | P | ⌀45, AS14×9×70 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 48.5 | 14 |
B | ⌀50, AS14×9×70 | M16 × 2 | 50 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 53.5 | 14 | |
180 | B | ⌀50, AS14×9×70 | M16 × 2 | 50 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 53.5 | 14 |
Size | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | ||
B (A) | Working port | Size | 1/2 in | 3/4 in | 1 in | 1 1/4 in | ||||||||
Standard | Dimensions according to SAE J518 | |||||||||||||
Fastening thread 1) | M8 × 1.25; 15 mm deep | M10 × 1.5; 17 mm deep | M12 × 1.75; 17 mm deep | M14 × 2; 19 mm deep | ||||||||||
State on delivery | With protective cover (must be connected) | |||||||||||||
S | Suction port | Size | 3/4 in | 1 in | 1 1/4 in | 1 1/2 in | ||||||||
Standard | Dimensions according to SAE J518 | |||||||||||||
Fastening thread 1) | M10 × 1.5; 17 mm deep | M12 × 1.75; 20 mm deep | ||||||||||||
State on delivery | With protective cover (must be connected) | |||||||||||||
T1 | Drain port | Size | M16 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | M22 × 1.5; 14 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery 3) | Plugged (observe installation instructions) | |||||||||||||
T2 | Drain port | Size | M16 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | M22 × 1.5; 14 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery 3) | With protective cover (observe installation instructions) | |||||||||||||
R | Air bleed port | Size | M10 × 1; 12 mm deep | M12 × 1.5; 12 mm deep | M14 × 1.5; 12 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 200 | ||
B (A) | Working port | Size | 1 1/4 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M14 × 2; 19 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | 3 1/2 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M16 × 2; 24 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | Plugged (observe installation instructions) | ||
T2 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | With protective cover (observe installation instructions) | ||
R | Air bleed port | Size | M14 × 1.5; 12 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 250 | ||
B (A) | Working port | Size | 1 1/4 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M14 × 2; 19 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | 2 1/2 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M12 × 1.75; 17 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | With protective cover (observe installation instructions) | ||
T2 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | Plugged (observe installation instructions) | ||
U | Bearing flushing | Size | M14 × 1.5; 12 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
Size | D1 | D3 | D4 | D5 | D7 | D8 | D9 | D10 | D11 | D12 | D14 | D15 | D18 | D20 | D24 | D25 | D27 | D28 | D29 | D30 | D32 | D40 | D41 | D42 | D43 | D44 | D45 | D47 | D48 | |
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | ||
355 | 280 | 0 - 0.081 | 350 | 198 | 171 | 250 | 28 | 14 | 50 | 48 | 128 | 102 | 320 | 83 | 83 | 23.5 | 335 | 360 | 320 | 18 | M18 | 245 | 36.5 | 79.4 | 40 | 50.8 | 88.9 | 63 | 60 | 50 |
500 | 315 | 0 - 0.081 | 396 | 220 | 192 | 276 | 30 | 14 | 50 | 48 | 142 | 112.5 | 362 | 98 | 111 | 27.5 | 375 | 400 | 360 | 22 | M20 | 270 | 36.6 | 79.4 | 40 | 62 | 106.4 | 75 | 65 | 55 |
710 | 400 | 0 - 0.089 | 507 | 249 | 236 | 344 | 35 | 14 | 50 | 47 | 183 | 102 | 485 | 131 | 156 | 41.5 | 465 | 500 | 450 | 22 | M24 | 340 | 44.5 | 96.8 | 50 | 77.8 | 130.2 | 100 | 85 | 70 |
1000 | 400 | 0 - 0.089 | 511 | 277 | 236 | 344 | 35 | 14 | 50 | 47 | 183 | 143 | 468 | 131 | 156 | 41.5 | 465 | 500 | 450 | 22 | M24 | 340 | 44.5 | 96.8 | 50 | 77.8 | 130.2 | 100 | 85 | 70 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | N2 | N3 | N4 | N5 | ⌀N6 |
mm | mm | mm | mm | mm | ||||
355 | Z | W60×2×28×9g | M20 × 2.5 | 15 | 42 | 71 | 82 | 70 |
500 | Z | W70×3×22×9g | M20 × 2.5 | 15 | 42 | 67 | 80 | 80 |
710 | Z | W90×3×28×9g | M24 × 3 | 18 | 50 | 91 | 105 | 100 |
1000 | Z | W90×3×28×9g | M24 × 3 | 18 | 50 | 91 | 105 | 100 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | ⌀N1 | N2 | N3 | N5 | ⌀N6 | N7 | N8 | |
mm | mm | mm | mm | mm | mm | mm | mm | ||||
355 | P | ⌀60, AS18×11×100 | M20 × 2.5 | 60 | + 0.03 + 0.011 | 15 | 42 | 105 | 70 | 64 | 18 |
500 | P | ⌀70, AS20×12×100 | M20 × 2.5 | 70 | + 0.03 + 0.011 | 15 | 42 | 105 | 80 | 74.5 | 20 |
710 | P | ⌀90, AS25×14×125 | M24 × 3 | 90 | + 0.035 + 0.013 | 18 | 50 | 130 | 100 | 95 | 25 |
1000 | P | ⌀90, AS25×14×125 | M24 × 3 | 90 | + 0.035 + 0.013 | 18 | 50 | 130 | 100 | 95 | 25 |
Size | 355 | 500 | 710 | 1000 | ||
B (A) | Working port | Size | 1 1/2 in | 2 in | ||
Standard | Dimensions according to SAE J518 | |||||
Fastening thread 1) | M16 × 2; 21 mm deep | M20 × 2.5; 30 mm deep | ||||
State on delivery | With protective cover (must be connected) | |||||
S | Suction port | Size | 2 1/2 in | 3 in | 4 in | |
Standard | Dimensions according to SAE J518 | |||||
Fastening thread 1) | M12 × 1.75; 17 mm deep | M16 × 2; 24 mm deep | ||||
State on delivery | With protective cover (must be connected) | |||||
T1 | Drain port | Size | M33 × 2; 18 mm deep | M42 × 2; 20 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery 3) | With protective cover (observe installation instructions) | |||||
T2 | Drain port | Size | M33 × 2; 18 mm deep | M42 × 2; 20 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery 3) | Plugged (observe installation instructions) | |||||
U | Bearing flushing | Size | M14 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged | |||||
MB (MA) | Measuring port pressure A, B | Size | M14 × 1.5; 12 mm deep | |||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged | |||||
MS | Measuring port suction pressure | Size | M14 × 1.5; 12 mm deep | |||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
2) | Thread according to DIN 3852, maximum tightening torque: 30 Nm |
Size | 5 | ||
B (A) | Working port | Size | M18 × 1.5; 12 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | M22 × 1.5; 14 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M10 × 1; 8 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery 2) | Plugged (observe installation instructions) | ||
T2 | Drain port | Size | M10 × 1; 8 mm deep |
Standard 1) | DIN 3852 | ||
State on delivery 2) | With protective cover (observe installation instructions) |
1) | The spot face can be deeper than specified in the appropriate standard. |
2) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 10 | 12 | 16 | ||
B (A) | Working port | Size | M22 × 1.5; 14 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | With protective cover (must be connected) | ||||
S | Suction port | Size | M33 × 2; 18 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | With protective cover (must be connected) | ||||
T1 | Drain port | Size | M12 × 1.5; 12 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery 2) | Plugged (observe installation instructions) | ||||
T2 | Drain port | Size | M12 × 1.5; 12 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery 2) | With protective cover (observe installation instructions) | ||||
R | Air bleed port | Size | M8 × 1; 8 mm deep | ||
Standard 1) | DIN 3852 | ||||
State on delivery | Plugged |
1) | The spot face can be deeper than specified in the appropriate standard. |
2) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
Size | D1 | D3 | D4 | D6 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 | D16 | D17 | D18 | D19 | D20 | D21 | D22 | D25 | D28 | D29 | D32 | D40 | D41 | D42 | D43 | D44 | |
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | |
23 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
28 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
32 | 100 | 0 - 0.022 | 190 | 117 | 60 | 18 | 8 | 25 | 23.2 | 70 | 144 | 88 | 166 | 14 | 25 | 106 | 56 | 42 | 61 | 9 | 118 | 125 | 11 | 106 | 18.2 | 40.5 | 13 | 22.2 | 47.6 |
45 | 125 | 0 - 0.025 | 207 | 133 | 64 | 20 | 12 | 32 | 30 | 80 | 155 | 100 | 179 | 20 | 28 | 108 | 63 | 42 | 78 | 11 | 150 | 160 | 13.5 | 118 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
56 | 125 | 0 - 0.025 | 225 | 142 | 68 | 20 | 10 | 32 | 30 | 87 | 171 | 107 | 195 | 23 | 31 | 117 | 70 | 50 | 78 | 11 | 150 | 160 | 13.5 | 128 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
63 | 125 | 0 - 0.025 | 225 | 142 | 68 | 20 | 10 | 32 | 30 | 87 | 171 | 107 | 195 | 23 | 31 | 117 | 70 | 50 | 78 | 11 | 150 | 160 | 13.5 | 128 | 23.8 | 50.8 | 19 | 26.2 | 52.4 |
80 | 140 | 0 - 0.025 | 257 | 162 | 73 | 20 | 10 | 32 | 29 | 99 | 196 | 122 | 224 | 25 | 41 | 132 | 83 | 63 | 86 | 11 | 165 | 180 | 13.5 | 138 | 27.8 | 57.2 | 25 | 30.2 | 58.7 |
90 | 140 | 0 - 0.025 | 257 | 162 | 73 | 20 | 10 | 32 | 29 | 99 | 196 | 136 | 224 | 25 | 41 | 132 | 83 | 63 | 86 | 11 | 165 | 180 | 13.5 | 138 | 27.8 | 57.2 | 25 | 30.2 | 58.7 |
107 | 160 | 0 - 0.025 | 275 | 174 | 89 | 23 | 10 | 40 | 85 | 110 | 213 | 136 | 245 | 20 | 40 | 140 | 85 | 65 | 98 | 12 | 190 | 200 | 17.5 | 150 | 27.8 | 57.2 | 25 | 35.7 | 69.9 |
125 | 160 | 0 - 0.025 | 275 | 174 | 89 | 23 | 10 | 40 | 36.5 | 110 | 213 | 136 | 245 | 20 | 40 | 140 | 85 | 65 | 98 | 12 | 190 | 200 | 17.5 | 150 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
160 | 180 | 0 - 0.025 | 294 | 188 | 101 | 25 | 10 | 40 | 37.2 | 121 | 237 | 149 | 271 | 15 | 47 | 158 | 96 | 72 | 108 | 13 | 210 | 224 | 17.5 | 180 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
180 | 180 | 0 - 0.025 | 294 | 188 | 101 | 25 | 10 | 40 | 37.2 | 121 | 237 | 149 | 271 | 15 | 47 | 158 | 96 | 72 | 108 | 13 | 210 | 224 | 17.5 | 180 | 31.8 | 66.7 | 32 | 35.7 | 69.9 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | N2 | N3 | N4 | N5 | ØN6 |
mm | mm | mm | mm | mm | ||||
23 | Z | W25×1.25×18×9g | M8 × 1.25 | 6 | 19 | 28 | 43 | 35 |
A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 | |
28 | Z | W25×1.25×18×9g | M8 × 1.25 | 6 | 19 | 28 | 43 | 35 |
A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 | |
32 | A | W30×2×14×9g | M10 × 1.5 | 7.5 | 22 | 27 | 35 | 35 |
45 | Z | W30×2×14×9g | M12 × 1.75 | 9.5 | 28 | 27 | 35 | 35 |
56 | Z | W30×2×14×9g | M12 × 1.75 | 9.5 | 28 | 27 | 35 | 40 |
A | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 40 | |
63 | A | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 40 |
80 | Z | W35×2×16×9g | M12 × 1.75 | 9.5 | 28 | 32 | 40 | 45 |
A | W40×2×18×9g | M16 × 2 | 12 | 36 | 37 | 45 | 45 | |
90 | A | W40×2×18×9g | M16 × 2 | 12 | 36 | 37 | 45 | 45 |
107 | Z | W40×2×18×9g | M12 × 1.75 | 9.5 | 28 | 37 | 45 | 50 |
A | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 50 | |
125 | A | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 50 |
160 | Z | W45×2×21×9g | M16 × 2 | 12 | 36 | 42 | 50 | 60 |
A | W50×2×24×9g | M16 × 2 | 12 | 36 | 44 | 55 | 60 | |
180 | A | W50×2×24×9g | M16 × 2 | 12 | 36 | 44 | 55 | 60 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | ⌀N1 | N2 | N3 | N5 | ⌀N6 | N7 | N8 | |
mm | mm | mm | mm | mm | mm | mm | mm | ||||
23 | P | ⌀25, AS8×7×40 | M8 × 1.25 | 25 | + 0.015 + 0.002 | 6 | 19 | 50 | 35 | 28 | 8 |
B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 | |
28 | P | ⌀25, AS8×7×40 | M8 × 1.25 | 25 | + 0.015 + 0.002 | 6 | 19 | 50 | 35 | 28 | 8 |
B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 | |
32 | B | ⌀30, AS8×7×40 | M10 × 1.5 | 30 | + 0.015 + 0.002 | 7.5 | 22 | 50 | 35 | 33 | 8 |
45 | P | ⌀30, AS8×7×50 | M12 × 1.75 | 30 | + 0.015 + 0.002 | 9.5 | 28 | 60 | 35 | 33 | 8 |
56 | P | ⌀30, AS8×7×50 | M12 × 1.75 | 30 | + 0.015 + 0.002 | 9.5 | 28 | 60 | 40 | 33 | 8 |
B | ⌀35, AS10×8×50 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 60 | 40 | 38 | 10 | |
63 | B | ⌀35, AS10×8×50 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 60 | 40 | 38 | 10 |
80 | P | ⌀35, AS10×8×56 | M12 × 1.75 | 35 | + 0.018 + 0.002 | 9.5 | 28 | 70 | 45 | 38 | 10 |
B | ⌀40, AS12×8×56 | M16 × 2 | 40 | + 0.018 + 0.002 | 12 | 36 | 70 | 45 | 43 | 12 | |
90 | B | ⌀40, AS12×8×56 | M16 × 2 | 40 | + 0.018 + 0.002 | 12 | 36 | 70 | 45 | 43 | 12 |
107 | P | ⌀40, AS12×8×63 | M12 × 1.75 | 40 | + 0.018 + 0.002 | 9.5 | 28 | 80 | 50 | 43 | 12 |
B | ⌀45, AS14×9×63 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 80 | 50 | 48.5 | 14 | |
125 | B | ⌀45, AS14×9×63 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 80 | 50 | 48.5 | 14 |
160 | P | ⌀45, AS14×9×70 | M16 × 2 | 45 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 48.5 | 14 |
B | ⌀50, AS14×9×70 | M16 × 2 | 50 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 53.5 | 14 | |
180 | B | ⌀50, AS14×9×70 | M16 × 2 | 50 | + 0.018 + 0.002 | 12 | 36 | 90 | 60 | 53.5 | 14 |
Size | 23 | 28 | 32 | 45 | 56 | 63 | 80 | 90 | 107 | 125 | 160 | 180 | ||
B (A) | Working port | Size | 1/2 in | 3/4 in | 1 in | 1 1/4 in | ||||||||
Standard | Dimensions according to SAE J518 | |||||||||||||
Fastening thread 1) | M8 × 1.25; 15 mm deep | M10 × 1.5; 17 mm deep | M12 × 1.75; 17 mm deep | M14 × 2; 19 mm deep | ||||||||||
State on delivery | With protective cover (must be connected) | |||||||||||||
S | Suction port | Size | 3/4 in | 1 in | 1 1/4 in | 1 1/2 in | ||||||||
Standard | Dimensions according to SAE J518 | |||||||||||||
Fastening thread 1) | M10 × 1.5; 17 mm deep | M12 × 1.75; 20 mm deep | ||||||||||||
State on delivery | With protective cover (must be connected) | |||||||||||||
T1 | Drain port | Size | M16 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | M22 × 1.5; 14 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery 3) | Plugged (observe installation instructions) | |||||||||||||
T2 | Drain port | Size | M16 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | M22 × 1.5; 14 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery 3) | With protective cover (observe installation instructions) | |||||||||||||
R | Air bleed port | Size | M10 × 1; 12 mm deep | M12 × 1.5; 12 mm deep | M14 × 1.5; 12 mm deep | |||||||||
Standard 2) | DIN 3852 | |||||||||||||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 200 | ||
B (A) | Working port | Size | 1 1/4 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M14 × 2; 19 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | 3 1/2 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M16 × 2; 24 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | Plugged (observe installation instructions) | ||
T2 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | With protective cover (observe installation instructions) | ||
R | Air bleed port | Size | M14 × 1.5; 12 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
Size | 250 | ||
B (A) | Working port | Size | 1 1/4 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M14 × 2; 19 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
S | Suction port | Size | 2 1/2 in |
Standard | Dimensions according to SAE J518 | ||
Fastening thread 1) | M12 × 1.75; 17 mm deep | ||
State on delivery | With protective cover (must be connected) | ||
T1 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | With protective cover (observe installation instructions) | ||
T2 | Drain port | Size | M22 × 1.5; 14 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery 3) | Plugged (observe installation instructions) | ||
U | Bearing flushing | Size | M14 × 1.5; 12 mm deep |
Standard 2) | DIN 3852 | ||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
1) | To shaft collar |
Size | D1 | D3 | D4 | D5 | D7 | D8 | D9 | D10 | D11 | D12 | D14 | D15 | D18 | D20 | D24 | D25 | D27 | D28 | D29 | D30 | D32 | D40 | D41 | D42 | D43 | D44 | D45 | D47 | D48 | |
mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | mm | ||
355 | 280 | 0 - 0.081 | 350 | 198 | 171 | 250 | 28 | 14 | 50 | 48 | 128 | 102 | 320 | 83 | 83 | 23.5 | 335 | 360 | 320 | 18 | M18 | 245 | 36.5 | 79.4 | 40 | 50.8 | 88.9 | 63 | 60 | 50 |
500 | 315 | 0 - 0.081 | 396 | 220 | 192 | 276 | 30 | 14 | 50 | 48 | 142 | 112.5 | 362 | 98 | 111 | 27.5 | 375 | 400 | 360 | 22 | M20 | 270 | 36.6 | 79.4 | 40 | 62 | 106.4 | 75 | 65 | 55 |
710 | 400 | 0 - 0.089 | 507 | 249 | 236 | 344 | 35 | 14 | 50 | 47 | 183 | 102 | 485 | 131 | 156 | 41.5 | 465 | 500 | 450 | 22 | M24 | 340 | 44.5 | 96.8 | 50 | 77.8 | 130.2 | 100 | 85 | 70 |
1000 | 400 | 0 - 0.089 | 511 | 277 | 236 | 344 | 35 | 14 | 50 | 47 | 183 | 143 | 468 | 131 | 156 | 41.5 | 465 | 500 | 450 | 22 | M24 | 340 | 44.5 | 96.8 | 50 | 77.8 | 130.2 | 100 | 85 | 70 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | N2 | N3 | N4 | N5 | ⌀N6 |
mm | mm | mm | mm | mm | ||||
355 | Z | W60×2×28×9g | M20 × 2.5 | 15 | 42 | 71 | 82 | 70 |
500 | Z | W70×3×22×9g | M20 × 2.5 | 15 | 42 | 67 | 80 | 80 |
710 | Z | W90×3×28×9g | M24 × 3 | 18 | 50 | 91 | 105 | 100 |
1000 | Z | W90×3×28×9g | M24 × 3 | 18 | 50 | 91 | 105 | 100 |
1) | Center bore according to DIN 332 (thread according to DIN 13) |
NG | Code | Designation | Thread G | ⌀N1 | N2 | N3 | N5 | ⌀N6 | N7 | N8 | |
mm | mm | mm | mm | mm | mm | mm | mm | ||||
355 | P | ⌀60, AS18×11×100 | M20 × 2.5 | 60 | + 0.03 + 0.011 | 15 | 42 | 105 | 70 | 64 | 18 |
500 | P | ⌀70, AS20×12×100 | M20 × 2.5 | 70 | + 0.03 + 0.011 | 15 | 42 | 105 | 80 | 74.5 | 20 |
710 | P | ⌀90, AS25×14×125 | M24 × 3 | 90 | + 0.035 + 0.013 | 18 | 50 | 130 | 100 | 95 | 25 |
1000 | P | ⌀90, AS25×14×125 | M24 × 3 | 90 | + 0.035 + 0.013 | 18 | 50 | 130 | 100 | 95 | 25 |
Size | 355 | 500 | 710 | 1000 | ||
B (A) | Working port | Size | 1 1/2 in | 2 in | ||
Standard | Dimensions according to SAE J518 | |||||
Fastening thread 1) | M16 × 2; 21 mm deep | M20 × 2.5; 30 mm deep | ||||
State on delivery | With protective cover (must be connected) | |||||
S | Suction port | Size | 2 1/2 in | 3 in | 4 in | |
Standard | Dimensions according to SAE J518 | |||||
Fastening thread 1) | M12 × 1.75; 17 mm deep | M16 × 2; 24 mm deep | ||||
State on delivery | With protective cover (must be connected) | |||||
T1 | Drain port | Size | M33 × 2; 18 mm deep | M42 × 2; 20 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery 3) | With protective cover (observe installation instructions) | |||||
T2 | Drain port | Size | M33 × 2; 18 mm deep | M42 × 2; 20 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery 3) | Plugged (observe installation instructions) | |||||
U | Bearing flushing | Size | M14 × 1.5; 12 mm deep | M18 × 1.5; 12 mm deep | ||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged | |||||
MB (MA) | Measuring port pressure A, B | Size | M14 × 1.5; 12 mm deep | |||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged | |||||
MS | Measuring port suction pressure | Size | M14 × 1.5; 12 mm deep | |||
Standard 2) | DIN 3852 | |||||
State on delivery | Plugged |
1) | Thread according to DIN 13 |
2) | The spot face can be deeper than specified in the appropriate standard. |
3) | Unless otherwise specified. Other layouts on request. |
During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.
Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.
The case drain fluid in the housing must be directed to the reservoir via the highest available drain port (T1,T2).
If a shared drain line is used for several units, make sure that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating conditions, specifically on cold start. If this is not possible, separate reservoir lines must be laid as required.
To achieve favorable noise values, all connecting lines should be decoupled by using elastic elements and above-reservoir installation is to be avoided.
In all operating conditions, the suction and drain lines must lead into the reservoir below the minimum fluid level. The permissible suction height hS results from the overall loss of pressure; it must not, however, be higher than hS max = 800 mm. The minimum suction pressure at port S must also not fall below 0,8 bar absolute during operation and during cold start.
When designing the reservoir, ensure adequate space between the suction line and the drain line.This provides a slow-down and desgasification of the fluid and prevents that heated return flow is being drawn directly back into the suction line.
See the following examples 1 to 8.
Further installation positions are possible upon request. Recommended installation position: 1 and 2.
Below-tank installation is at hand if the axial piston unit is installed below the minimum liquid level outside the tank.
Installation position | Air bleeding | Filling |
1 | \u2012 | T1 |
2 | \u2012 | T2 |
3 | \u2012 | T1 |
4 | R (U) | T2 |
Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.
Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0,5 bar) can prevent draining of the pump housing.
Installation position | Air bleeding | Filling |
5 | F | T1 (F) |
6 | F | T2 (F) |
7 | F | T1 (F) |
8 | R (U) | T2 (F) |
Key | |
F | Filling / Air bleeding |
R | Air bleed port |
U | Bearing flushing / air bleed port |
S | Suction port |
T1, T2 | Drain port |
ht min | Minimum required immersion depth (200 mm) |
hmin | Minimum required spacing to reservoir bottom (100 mm) |
SB | Baffle (baffle plate) |
hS max | Maximum permissible suction height (800 mm) |
Note: Connection F is part of the external piping and must be provided on the customer side to simplify the filling and bleeding. |
Connection F is part of the external piping and must be provided on the customer side to simplify the filling and bleeding.
The axial piston unit is designed to be used in open circuits.
The project planning, installation and commissioning of the axial piston unit require the involvement of qualified skilled personnel.
Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, request it from Bosch Rexroth.
Before finalizing your design, request a binding installation drawing.
The specified datas and notes must be observed.
Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation times are valid under optimal storage conditions. Details of these conditions can be found in the data sheet 90312 or the instruction manual.
A pressure relief valve is to be provided in the hydraulic system.
Observe the instructions in the instruction manual regarding tightening torques of connection threads and other threaded joints used.
The notes in the instruction manual on tightening torques of the port threads and other screw joints must be observed.
The ports and fastening threads are designed for the permissible maximum pressure pmax (see instruction manual). The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
The working ports and function ports are designated only to accommodate hydraulic lines.
During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.
Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.
The case drain fluid in the housing must be directed to the reservoir via the highest available drain port (T1,T2).
If a shared drain line is used for several units, make sure that the respective case pressure is not exceeded. The shared drain line must be dimensioned to ensure that the maximum permissible case pressure of all connected units is not exceeded in any operating conditions, specifically on cold start. If this is not possible, separate reservoir lines must be laid as required.
To achieve favorable noise values, all connecting lines should be decoupled by using elastic elements and above-reservoir installation is to be avoided.
In all operating conditions, the suction and drain lines must lead into the reservoir below the minimum fluid level. The permissible suction height hS results from the overall loss of pressure; it must not, however, be higher than hS max = 800 mm. The minimum suction pressure at port S must also not fall below 0,8 bar absolute during operation and during cold start.
When designing the reservoir, ensure adequate space between the suction line and the drain line.This provides a slow-down and desgasification of the fluid and prevents that heated return flow is being drawn directly back into the suction line.
See the following examples 1 to 8.
Further installation positions are possible upon request. Recommended installation position: 1 and 2.
Below-tank installation is at hand if the axial piston unit is installed below the minimum liquid level outside the tank.
Installation position | Air bleeding | Filling |
1 | \u2012 | T1 |
2 | \u2012 | T2 |
3 | \u2012 | T1 |
4 | R (U) | T2 |
Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.
Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0,5 bar) can prevent draining of the pump housing.
Installation position | Air bleeding | Filling |
5 | F | T1 (F) |
6 | F | T2 (F) |
7 | F | T1 (F) |
8 | R (U) | T2 (F) |
Key | |
F | Filling / Air bleeding |
R | Air bleed port |
U | Bearing flushing / air bleed port |
S | Suction port |
T1, T2 | Drain port |
ht min | Minimum required immersion depth (200 mm) |
hmin | Minimum required spacing to reservoir bottom (100 mm) |
SB | Baffle (baffle plate) |
hS max | Maximum permissible suction height (800 mm) |
Note: Connection F is part of the external piping and must be provided on the customer side to simplify the filling and bleeding. |
Connection F is part of the external piping and must be provided on the customer side to simplify the filling and bleeding.
The axial piston unit is designed to be used in open circuits.
The project planning, installation and commissioning of the axial piston unit require the involvement of qualified skilled personnel.
Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, request it from Bosch Rexroth.
Before finalizing your design, request a binding installation drawing.
The specified datas and notes must be observed.
Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation times are valid under optimal storage conditions. Details of these conditions can be found in the data sheet 90312 or the instruction manual.
A pressure relief valve is to be provided in the hydraulic system.
Observe the instructions in the instruction manual regarding tightening torques of connection threads and other threaded joints used.
The notes in the instruction manual on tightening torques of the port threads and other screw joints must be observed.
The ports and fastening threads are designed for the permissible maximum pressure pmax (see instruction manual). The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
The working ports and function ports are designated only to accommodate hydraulic lines.